1) Primitives: KEM-DEM Security Pen & Paper Proof 2) KEM-DEM & more in ProofFrog

CAPS 2025

https://prooffrog.github.io/

https://eprint.iacr.org/2025/418

FACULTY OF

Douglas Stebila

Joint work with Ross Evans and Matthew McKague

Primitives: KEM-DEM Security Pen & Paper Proof

CAPS 2025

https://prooffrog.github.io/caps-2025.html

Douglas Stebila

Recap: Provable Security and Game Hopping Proofs

Recap of provable security

Main approach of reductionist security:

- 1. Define the syntax of the relevant primitives
- 2. Define security experiments for the relevant primitives
- 3. Specify your scheme
- 4. State a theorem bounding the success probability for a certain class of adversaries in breaking security of your scheme
 - usually depending on the success probability of breaking security of underlying primitives (and other terms)
- 5. Prove the theorem

Code-based game-playing proofs

Papers

- Shoup 2004
- Bellare & Rogaway 2004
- **...**

Textbooks

- Katz & Lindell, Introduction to Modern Cryptography
- Rosulek, Joy of Cryptography
- Boneh & Shoup, A Graduate Course in Applied Cryptography
- **-** ...

CODE-BASED GAME-PLAYING PROOFS

A **security definition** is an experiment (expressed in pseudocode) with oracles

Different ways of structuring the experiment & oracles

main function that explicitly calls adversary with specified oracles

2. initialize / adversary access to all oracles / finalize

3. initialize / adversary access to all oracles + direct adversary output

Different experiment styles

single-game win/lose(secure if success probability ≈ 0)

2. single-game hidden bit guessing (secure if success probability $\approx 1/2$)

3. two-game indistinguishability: left/right, real/random, real/ideal, ... (secure if distinguishing advantage ≈ 0)

Can even do this style for traditional win/lose games like unforgeability: e.g. "check" oracle that runs verify (real) versus rejects if not on a list (ideal)

Terminology

• A **library** is a collection of algorithms (each with input/output interfaces) and private variables that the algorithms can access.

• An algorithm can call into a library. The combined program is denoted $\mathcal{A} \diamond \mathcal{L}$

Libraries for security definitions

- We will use libraries to formalize a security definition:
 - private variables for the experiment
 - initialize routine
 - oracles that the adversary can call
- For a scheme Σ in a two-game indistinguishability experiment $(\mathcal{L}_{left}, \mathcal{L}_{right})$ we want to show that, for all programs \mathcal{A}

$$\Pr[\mathcal{A} \diamond \mathcal{L}^{\Sigma}_{left} \Rightarrow \mathsf{true}] \approx \Pr[\mathcal{A} \diamond \mathcal{L}^{\Sigma}_{right} \Rightarrow \mathsf{true}]$$

Terminology

- **Inlining** library \mathcal{L} into program (or library) \mathcal{A} : inserting the code from library \mathcal{L} into another program \mathcal{A} in every place where a subroutine of library \mathcal{L} is called
- Interchangeable: libraries \mathcal{L}_1 and \mathcal{L}_2 are interchangeable (denoted $\mathcal{L}_1 \equiv \mathcal{L}_2$) if, for all programs \mathcal{A} it holds that

$$\Pr[\mathcal{A} \diamond \mathcal{L}_1 \Rightarrow \mathsf{true}] = \Pr[\mathcal{A} \diamond \mathcal{L}_2 \Rightarrow \mathsf{true}]$$

- Interchangeability comes up in "rewriting steps" in game-hopping proofs.)
- One way of showing interchangeability is to show that \mathcal{L}_1 and \mathcal{L}_2 is to show that they are "code-wise equivalent", meaning they have the same source code, or "equivalent" source code
- Indistinguishability: libraries \mathcal{L}_1 and \mathcal{L}_2 are indistinguishable if, for all programs \mathcal{A} it holds that

$$\Pr[\mathcal{A} \diamond \mathcal{L}_1 \Rightarrow \mathsf{true}] \approx \Pr[\mathcal{A} \diamond \mathcal{L}_2 \Rightarrow \mathsf{true}]$$

Game-hopping proofs

Goal: Show $\Pr[\mathcal{A} \diamond \mathcal{L}_{left}^{\Sigma} \Rightarrow \mathsf{true}] \approx \Pr[\mathcal{A} \diamond \mathcal{L}_{right}^{\Sigma} \Rightarrow \mathsf{true}]$

- Game $o = \mathcal{L}_{left}^{\Sigma}$ is the inlining of the code for your scheme Σ into security experiment \mathcal{L}_{left}
- Game 1 is another game (library) typically formed by changing some lines of Game 0
- Game 1 and Game 0 could be indistinguishable for one of several reasons:
 - They are in fact interchangeable (code-wise equivalent)
 - They are indistinguishable under some computational assumption
 - They are indistinguishable under some statistical argument

Game-hopping proofs

- Suppose we want to show Game o and Game 1 are indistinguishable under some computational assumption.
- Namely suppose scheme Γ satisfies a two-game security notion $(\mathcal{M}_{left}, \mathcal{M}_{right})$

$$\Pr[\mathcal{B} \diamond \mathcal{M}_{left}^{\Gamma} \Rightarrow \mathsf{true}] \approx \Pr[\mathcal{B} \diamond \mathcal{M}_{right}^{\Gamma} \Rightarrow \mathsf{true}]$$

• We define a reduction \mathcal{R} that is an adversary to $(\mathcal{M}_{left}^{\Gamma}, \mathcal{M}_{right}^{\Gamma})$ such that

$$\mathcal{R} \diamond \mathcal{M}_{left}^{\Sigma} \equiv \mathrm{Game}_0$$

$$\mathcal{R} \diamond \mathcal{M}^{\Sigma}_{right} \equiv \mathrm{Game}_1$$

• We can conclude that Game 0 and Game 1 are indistinguishable assuming Γ is secure

Game-hopping proofs

Goal: Show $\Pr[\mathcal{A} \diamond \mathcal{L}_{left}^{\Sigma} \Rightarrow \mathsf{true}] \approx \Pr[\mathcal{A} \diamond \mathcal{L}_{right}^{\Sigma} \Rightarrow \mathsf{true}]$

• Repeat game hops as many times as needed until we arrive at a Game *n* such that

$$Game_n \equiv \mathcal{L}_{right}^{\Sigma}$$

To summarize, a proof consists of

- 1. Specifying each intermediate game (some can technically be omitted if they are implied by the reductions)
- 2. Justifying each game hop
 - If using indistinguishability:
 - 1. Specifying the reduction for each hop
 - 2. Justifying that each reduction inlined to its left/right game is code-wise equivalent to the previous/next game

KEM-DEM is IND-CPA

in the Joy of Cryptography style

with figures by Mike Rosulek

https://garbledcircus.com/kemdem/left-right

Goal: KEM-DEM is IND-CPA

Construction:

Build a public key encryption scheme by

- using a key encapsulation mechanism to compute a shared secret,
- and use that shared secret in a symmetric encryption scheme (data encapsulation mechanism) to encrypt a message.

Security:

Show that the KEM-DEM approach yields an IND-CPA-secure public key encryption scheme assuming that

- the KEM is IND-CPA-secure
- and the symmetric encryption scheme has one-time secrecy

Goal: KEM-DEM is IND-CPA

Idea of the proof:

- Game o = Starting game: Encrypt left message under real key
- Game 1: Use random KEM shared secret instead of real
- Game 2: Encrypt right message instead of left (under random key)
- Game 3: Use real KEM shared secret instead of random
 - Game 3 = Ending game: Encrypt right message under real key

If we want to be thorough, we need to:

- 1. Symmetric encryption scheme: define (a) syntax; (b) one-time secrecy
- 2. Key encapsulation mechanism: define (a) syntax; (b) IND-CPA security
- 3. Public key encryption scheme: define (a) syntax; (b) IND-CPA security
- 4. State the **KEM-DEM scheme**
- 5. Give a **game-hopping proof** for IND-CPA security of KEM-DEM
 - 1. State intermediate games (can be implicit)
 - 2. Give reductions to security of KEM or DEM
 - 3. Justify interchangeability / indistinguishability
- 6. State the **theorem** we just proved

Opinionated choices for this proof

- In the style of *Joy of Cryptography* by Mike Rosulek
- All security experiments are two-game indistinguishability: left/right, real/random
- All security experiments structured with initialize / adversary access to all oracles
 + direct adversary output
- Adversary gets setup values via oracles rather than direct input

1.a) Syntax of symmetric encryption scheme

A **symmetric-key encryption (SKE) scheme** consists of the following algorithms:

- Enc: a (possibly randomized) algorithm that takes a key $K \in \mathcal{K}$ and plaintext $M \in \mathcal{M}$ as input, and outputs a ciphertext $C \in \mathcal{C}$.
- Dec: a deterministic algorithm that takes a key $K \in \mathcal{K}$ and ciphertext $C \in \mathcal{C}$ as input, and outputs a plaintext $M \in \mathcal{M}$.

1.b) One-time secrecy of symmetric encryption

An encryption scheme Σ has **computational one-time secrecy (cOTS)** if the following two libraries are indistinguishable:

$$egin{aligned} \mathcal{L}^\Sigma_{\mathsf{ske-ots-left}} & \mathcal{L}^\Sigma_{\mathsf{ske-ots-right}} \ & \mathcal{L}^\Sigma_{\mathsf{ske-ots-righ$$

Note that $\mathcal{L}_{\mathsf{ske-ots-rand}}$ makes no restriction about the lengths of M_L and M_R . Thus, the definition is suitable when all plaintexts have a known, fixed length.

2.a) Syntax of key encapsulation mechanism

A key encapsulation mechanism (KEM) consists of the following algorithms:

- KeyGen: same as in a PKE scheme, a randomized algorithm that takes no inputs and outputs a keypair (PK, SK).
- Encaps: a randomized algorithm that takes only a public key PK as input and returns both a ciphertext $C \in \mathcal{C}$ and plaintext $M \in \mathcal{M}$.
- Decaps: same as in a PKE scheme, a deterministic algorithm that takes a private key SK and ciphertext $C \in \mathcal{C}$ as input, and returns a plaintext $M \in \mathcal{M}$ (or raises an error).

2.b) IND-CPA security of a KEM

A KEM Σ has **security against chosen-plaintext attacks (CPA security)** if the following two libraries are indistinguishable:

3.a) Syntax of public key encryption

A **public-key encryption** (PKE) scheme consists of the following algorithms:

- KeyGen: a randomized algorithm that takes no inputs (besides the security parameter, which we never write explicitly) and outputs a **key** $\operatorname{pair}(PK, SK)$, where PK is a $\operatorname{public}(PK)$ and $\operatorname{public}(PK)$ is a $\operatorname{private}(PK)$.
- Enc: a randomized algorithm that takes a public key PK and plaintext $M \in \mathcal{M}$ as input and returns a ciphertext $C \in \mathcal{C}$.
- Dec: a deterministic algorithm that takes a private key SK and ciphertext $C \in \mathcal{C}$ as input, and returns a plaintext $M \in \mathcal{M}$ (or raises an error).

3.b) IND-CPA security of a PKE

A PKE scheme Σ has **security against chosen-plaintext attacks (CPA security)** if the following two libraries are indistinguishable:

$$\mathcal{L}^{\Sigma}_{ ext{pke-cpa-left}}$$
 $\mathcal{L}^{\Sigma}_{ ext{pke-cpa-right}}$ $\mathcal{L}^{\Sigma}_{ ext{pke-cpa-right}}$ $(PK, SK) := \Sigma. ext{KeyGen()}$ $PKE.CPA.PK():$ $ext{return } PK$ \cong $PKE.CPA.ENC(M_L, M_R):$ $C := \Sigma. ext{Enc}(PK, M_L)$ $C := \Sigma. ext{Enc}(PK, M_R)$ $C := \Sigma. ext{Enc}(PK, M_R)$

As above, the definition is suitable when plaintexts have a known, fixed length, since PKE.CPA.ENC of $\mathcal{L}_{\mathsf{pke-cpa-rand}}$ does not restrict the lengths of M_L and M_R .

4. State the KEM-DEM scheme

Let KEM be a KEM scheme and DEM be a SKE scheme, such that KEM. $\mathcal{M} = \mathsf{DEM}.\mathcal{K}$ (*i.e.*, KEM payloads can be interepreted as keys in DEM). Then **hybrid encryption** Hyb = Hyb[KEM, DEM] is defined by the following algorithms:

$$\mathsf{Hyb}.\mathcal{K} = \mathsf{KEM}.\mathcal{K}$$
 $\mathsf{Hyb}.\mathcal{M} = \mathsf{DEM}.\mathcal{M}$
 $\mathsf{Hyb}.\mathcal{C} = \mathsf{KEM}.\mathcal{C} imes \mathsf{DEM}.\mathcal{C}$
 $\mathsf{Hyb}.\mathsf{KeyGen} = \mathsf{KEM}.\mathsf{KeyGen}$

$$\frac{\mathsf{Hyb}.\mathsf{Enc}(PK,M):}{(C_{\ker},K) \twoheadleftarrow \mathsf{KEM}.\mathsf{Encaps}(PK)} \qquad \frac{\mathsf{Hyb}.\mathsf{Dec}(SK,(C_{\ker},C_{\dim})):}{K:=\mathsf{KEM}.\mathsf{Decaps}(SK,C_{\ker})} \\ C_{\dim} \twoheadleftarrow \mathsf{DEM}.\mathsf{Enc}(K,M) \qquad \text{if } K == \bot : \mathsf{return} \bot \\ \mathsf{return} \ (C_{\ker},C_{\dim}) \qquad \qquad \mathsf{return} \ \mathsf{DEM}.\mathsf{Dec}(K,C_{\dim}) \\ \end{cases}$$

5. Proof: Game 0: Inline KEM-DEM scheme into CPA-left game

```
The starting point is \mathcal{L}_{pke-cpa-left}^{Hyb}.
                                            \mathcal{L}_{	ext{pke-cpa-left}}^{	ext{Hyb}}
                          // Hyb.KeyGen():
                          (PK, SK) := KEM.KeyGen()
                          PKE.CPA.PK():
                              return PK
                          PKE.CPA.ENC(M_L, M_R):
                              /\!\!/ Hyb.Enc(PK, M_L):
                              (C_{\text{kem}}, K) \leftarrow \text{KEM.Encaps}(PK)
                              C_{\text{dem}} \leftarrow \mathsf{DEM}.\mathsf{Enc}(K, M_L)
                              return (C_{\text{kem}}, C_{\text{dem}})
```

5. Proof: Game 0 is equivalent to a reduction calling into the CPA-real game for the KEM

Rewrite in a logically equivalent way so that an instance of $\mathcal{L}_{\text{kem-cpa-real}}^{\text{KEM}}$ appears. $\mathcal{L}_{\mathsf{kem-cpa-real}}^{\mathsf{KEM}}$ PK := KEM.CPA.PK()(PK, SK) := KEM.KeyGen()PKE.CPA.PK(): return PK KEM.CPA.PK(): return PK PKE.CPA.ENC (M_L, M_R) : $(C_{\text{kem}}, K) := \text{KEM.CPA.ENC}()$ KEM.CPA.ENC(): $C_{\text{dem}} \leftarrow \mathsf{DEM}.\mathsf{Enc}(K, M_L)$ $(C,M) := \mathsf{KEM}.\mathsf{Encaps}(PK)$ return $(C_{\text{kem}}, C_{\text{dem}})$ return (C, M)

5. Proof: Hop to Game 1 by switching the KEM CPA-real game to CPA-ideal

KEM is CPA-secure, so $\mathcal{L}_{\text{kem-cpa-real}}^{\text{KEM}}$ can be replaced by $\mathcal{L}_{\text{kem-cpa-ideal}}^{\text{KEM}}$ with only negligible effect on the calling program.

5. Proof: Game 1: Write out Game 1 explicitly by inlining previous slide

```
Inline the instance of \mathcal{L}_{\text{kem-cpa-ideal}}^{\text{KEM}}.
                           (PK, SK) := KEM.KeyGen()
                           PKE.CPA.PK():
                              return PK
                           PKE.CPA.ENC(M_L, M_R):
                              (C_{\text{kem}}, -) := \text{KEM.Encaps}(PK)
                              K \leftarrow \mathsf{KEM}.\mathcal{M}
                              C_{\text{dem}} \leftarrow \mathsf{DEM}.\mathsf{Enc}(K, M_L)
                              return (C_{\text{kem}}, C_{\text{dem}})
```

5. Proof: Game 1: Note that KEM shared secret space equals symmetric key encryption space

```
By our assumption, KEM.\mathcal{M} = DEM.\mathcal{K}.
                         (PK, SK) := KEM.KeyGen()
                        PKE.CPA.PK():
                            return PK
                         PKE.CPA.ENC(M_L, M_R):
                            (C_{\rm kem}, -) := {\sf KEM.Encaps}(PK)
                            K \leftarrow \mathsf{DEM}.\mathcal{K}
                            C_{\text{dem}} \leftarrow \mathsf{DEM}.\mathsf{Enc}(K, M_L)
                            return (C_{\text{kem}}, C_{\text{dem}})
```

5. Proof: Game 1 is equivalent to a reduction calling into the OTS-left game for the DEM

5. Proof: Hop to Game 2 by switching the DEM OTS-left game to OTS-right

DEM has cOTS security, so $\mathcal{L}_{\text{ske-ots-left}}^{\text{DEM}}$ can be replaced by $\mathcal{L}_{\text{ske-ots-right}}^{\text{DEM}}$ with only negligible effect on the calling program.

5. Proof: Game 2: Write out Game 2 explicitly by inlining previous slide

```
Inline the instance of \mathcal{L}_{\mathsf{ske-ots-right}}^{\mathsf{DEM}}.

(PK, SK) := \mathsf{KEM.KeyGen}()
\underline{PKE.\mathsf{CPA.PK}():}
\mathtt{return}\, PK
\underline{PKE.\mathsf{CPA.ENC}(M_L, M_R):}
(C_{\ker}, -) := \mathsf{KEM.Encaps}(PK)
K \leftarrow \mathsf{DEM.K}
C_{\dim} := \mathsf{DEM.Enc}(K, M_R)
\mathtt{return}\, (C_{\ker}, C_{\dim})
```

Now we need to undo the use of a random encryption key

5. Proof: Game 2: Note that KEM shared secret space equals symmetric key encryption space

The next few steps are identical to some previous steps, but taken in reverse order.

```
(PK,SK) := \mathsf{KEM.KeyGen}() \dfrac{\mathsf{PKE.CPA.PK}():}{\mathsf{return}\,PK} \dfrac{\mathsf{PKE.CPA.ENC}(M_L,M_R):}{(C_{\ker},-) := \mathsf{KEM.Encaps}(PK)} K \twoheadleftarrow \dfrac{\mathsf{DEM.K}}{C_{\dim} := \mathsf{DEM.Enc}(K,M_R)} \mathsf{return}\,(C_{\ker},C_{\dim})
```

L

5. Proof: Game 2 is equivalent to a reduction calling into the CPA-ideal game for the KEM

5. Proof: Hop to Game 3 by switching the KEM CPA-ideal game to CPA-real

5. Proof: Game 3: Write out Game 3 explicitly by inlining previous slide

```
(PK, SK) := KEM.KeyGen()
PKE.CPA.PK():
   return PK
PKE.CPA.ENC(M_L, M_R):
   (C_{\text{kem}}, K) := \frac{\mathsf{KEM}.\mathsf{Encaps}(PK)}{\mathsf{Encaps}(PK)}
   C_{\mathrm{dem}} := \mathsf{DEM}.\mathsf{Enc}(K, M_R)
   return (C_{\text{kem}}, C_{\text{dem}})
```

5. Proof: Game 3 is equivalent to the inlining of the KEM-DEM scheme into the PKE CPA-right game

What remains is exactly $\mathcal{L}_{pke-cpa-right}^{Hyb}$. $\mathcal{L}_{ ext{pke-cpa-right}}^{ ext{Hyb}}$ // Hyb.KeyGen(): (PK, SK) := KEM.KeyGen()PKE.CPA.PK(): return PK PKE.CPA.ENC (M_L, M_R) : // Hyb.Enc(PK, M_R): $(C_{\mathrm{kem}},K) := \mathsf{KEM}.\mathsf{Encaps}(PK)$ $C_{\mathrm{dem}} := \mathsf{DEM}.\mathsf{Enc}(K, M_R)$ return $(C_{\text{kem}}, C_{\text{dem}})$

Game o: KEM-DEM scheme in PKE CPA-left game

Game 1: Use random KEM shared secret instead of real

- Reduction R1 against KEM CPA security game
 - R1 with KEM-CPA-real = Game o
 - R1 with KEM-CPA-ideal = Game 1

Game 2: Encrypt right message instead of left (under random key)

- Reduction R2 against DEM OTS security game
 - R2 with DEM-OTS-left = Game 1
 - R2 with DEM-OTS-right = Game 2

Game 3: Use real KEM shared secret instead of random

- Reduction R3 against KEM CPA security game
 - R3 with KEM-CPA-ideal = Game 2
 - R3 with KEM-CPA-real = Game 3
- Game 3 = KEM-DEM scheme in PKE-CPA-right game

6. Theorem statement

Theorem. Let KEM be a key encapsulation mechanism and DEM be a symmetric encryption scheme such that KEM. $\mathcal{M} = \mathsf{DEM}.\mathcal{K}$. Let Hyb be the hybrid KEM-DEM scheme built from KEM and DEM. For every adversary \mathcal{A} , there exists reductions $\mathcal{R}_1, \mathcal{R}_2, \mathcal{R}_3$ (with small runtime) such that

$$\mathrm{Adv}_{\mathsf{Hyb}}^{\mathsf{CPA}}(\mathcal{A}) \leq \mathrm{Adv}_{\mathsf{KEM}}^{\mathsf{CPA}}(\mathcal{R}_1^{\mathcal{A}}) + \mathrm{Adv}_{\mathsf{DEM}}^{\mathsf{OTS}}(\mathcal{R}_2^{\mathcal{A}}) + \mathrm{Adv}_{\mathsf{KEM}}^{\mathsf{CPA}}(\mathcal{R}_3^{\mathcal{A}})$$

KEM-DEM & more in ProofFrog

CAPS 2025

https://prooffrog.github.io/

https://eprint.iacr.org/2025/418

Douglas Stebila

Joint work with Ross Evans and Matthew McKague

ProofFrog

- A new tool for representing and checking cryptographic game-hopping proofs in the computational model
- Focus on accessibility & syntax for pen-and-paper cryptographers
- Limited in scope, strength, expressivity, & more compared to other tools

- Able to verify several Joy of Cryptography-style textbook examples
- Not (yet) suitable for richer research-level proofs

ProofFrog's approach

- The author of the proof states the reductions for each hop and optionally intermediate games.
- ProofFrog tries to evaluate the validity of each game hop by checking **code-wise equivalence** of each step
- Code-wide equivalence is checked by taking each game to be compared and applying a series of automated transformations to try to coerce the game into a "canonical" form", and then comparing these canonical forms as strings
 - ProofFrog works with Abstract Syntax Trees
 - Examples of transformations: canonicalizing variable names, sorting sequence of statements, removing unused variables & statements, ...
- If ProofFrog's automated transformations manage to yield same canonical form: 👙

If ProofFrog's automated transformations don't suffice: out of luck

ProofFrog engine

See https://eprint.iacr.org/2025/418 for details

KEM-DEM is IND-CPA

in ProofFrog

https://prooffrog.github.io/caps-2025.html

If we want to be thorough, we need to:

- 1. Symmetric encryption scheme: define (a) syntax; (b) one-time secrecy
- 2. Key encapsulation mechanism: define (a) syntax; (b) IND-CPA security
- 3. Public key encryption scheme: define (a) syntax; (b) IND-CPA security
- 4. State the **KEM-DEM scheme**
- 5. Give a **game-hopping proof** for IND-CPA security of KEM-DEM
 - 1. State intermediate games (can be implicit)
 - 2. Give reductions to security of KEM or DEM
 - 3. Justify interchangeability / indistinguishability
- 6. State the **theorem** we just proved

1.a) Syntax of symmetric encryption scheme

A **symmetric-key encryption (SKE) scheme** consists of the following algorithms:

- Enc: a (possibly randomized) algorithm that takes a key $K \in \mathcal{K}$ and plaintext $M \in \mathcal{M}$ as input, and outputs a ciphertext $C \in \mathcal{C}$.
- Dec: a deterministic algorithm that takes a key $K \in \mathcal{K}$ and ciphertext $C \in \mathcal{C}$ as input, and outputs a plaintext $M \in \mathcal{M}$.

Definition is parameterized by some sets

```
Primitive SymEnc(Set MessageSpace, Set CiphertextSpace, Set KeySpace) {
    Set Message = MessageSpace;
    Set Ciphertext = CiphertextSpace;
    Set Key = KeySpace;

Algorithm Ciphertext Enc(Key k, Message m);
signatures Message Dec(Key k, Ciphertext c);
}
```

1.b) One-time secrecy of symmetric encryption

```
egin{aligned} \mathcal{L}^{\Sigma}_{\mathsf{ske-ots-left}} \ & \mathcal{L}^{\Sigma}_{\mathsf{ske-ots-right}} \ & \mathcal{L}^{\Sigma}_{\mathsf{sk
```

```
Game Left(SymEnc E) {
    E.Ciphertext ENC(E.Message mL, E.Message mR) {
        E.Key k <- E.Key;
        E.Ciphertext c = E.Enc(k, mL);
        return c;
    }
}</pre>
```

```
Game Right(SymEnc E) {
    E.Ciphertext ENC(E.Message mL, E.Message mR) {
        E.Key k <- E.Key;
        E.Ciphertext c = E.Enc(k, mR);
        return c;
    }
}</pre>
```

Observe that variables are typed

2.a) Syntax of key encapsulation mechanism

Definition is parameterized by some sets

```
Primitive KEM(Set SharedSecretSpace, Set CiphertextSpace, Set PKeySpace, Set SKeySpace) {
    Set SharedSecret = SharedSecretSpace;
    Set Ciphertext = CiphertextSpace;
    Set PublicKey = PKeySpace;
    Set SecretKey = SKeySpace;
    Tuple

Algorithm
signatures

PublicKey * SecretKey KeyGen();
Ciphertext * SharedSecret Encaps(PublicKey pk);
SharedSecret Decaps(SecretKey sk, Ciphertext m);
}
```

2.b) IND-CPA security of a KEM

```
Game Real(KEM K) {
                      Experiment private
    K.PublicKey pk; )
    K.SecretKey sk; 
                      variables
    Void Initialize() {
        K.PublicKey * K.SecretKey k = K.KeyGen();
                                               Initialize
        pk = k[0];
        sk = k[1];
                                    Adversary gets
    K.PublicKey PK() {
                                    public key via
        return pk;
                                        oracle
    K.SharedSecret * K.Ciphertext ENC() {
        K.Ciphertext * K.SharedSecret rsp = K.Encaps(pk);
        return rsp;
```

```
\mathcal{L}_{\mathsf{kem-cpa-real}}^{\Sigma} \mathcal{L}_{\mathsf{kem-cpa-ideal}}^{\Sigma} (PK,SK) := \Sigma.\mathsf{KeyGen}() (PK,SK) := \Sigma.\mathsf
```

2.b) IND-CPA security of a KEM

```
\mathcal{L}^{\Sigma}_{	ext{kem-cpa-real}} \mathcal{L}^{\Sigma}_{	ext{kem}} \mathcal{L}^{\Sigma}_{
```

```
\mathcal{L}^{\Sigma}_{\mathsf{kem	ext{-}cpa	ext{-}ideal}}
(PK, SK) := \Sigma.\mathsf{KeyGen}()
KEM.CPA.PK():
   return PK
KEM.CPA.ENC():
   (C,-) := \Sigma.\mathsf{Encaps}(PK)
  M \twoheadleftarrow \Sigma.\mathcal{M}
   return (C, M)
```

```
Game Ideal(KEM K) {
    K. PublicKey pk;
    K.SecretKey sk;
    Void Initialize() {
        K.PublicKey * K.SecretKey k = K.KeyGen();
        pk = k[0];
        sk = k[1];
    K.PublicKey PK() {
        return pk;
    K.SharedSecret * K.Ciphertext ENC() {
        K.Ciphertext * K.SharedSecret rsp = K.Encaps(pk);
        K.Ciphertext ctxt = rsp[0];
        K.SharedSecret ss <- K.SharedSecret;</pre>
        return [ctxt, ss];
```

3.a) Syntax of public key encryption

```
Primitive PubKeyEnc(Set MessageSpace, Set CiphertextSpace, Set PKeySpace, Set SKeySpace) {
    Set Message = MessageSpace;
    Set Ciphertext = CiphertextSpace;
    Set PublicKey = PKeySpace;
    Set SecretKey = SKeySpace;

PublicKey * SecretKey KeyGen();
    Ciphertext Enc(PublicKey pk, Message m);
    Message Dec(SecretKey sk, Ciphertext m);
}
```

3.b) IND-CPA security of a PKE

```
Game Left(PubKeyEnc E) {
    E.PublicKey pk;
    E.SecretKey sk;
    Void Initialize() {
        E.PublicKey * E.SecretKey k = E.KeyGen();
        pk = k[0];
        sk = k[1];
    E.PublicKey PK() {
        return pk;
    E.Ciphertext ENC(E.Message mL, E.Message mR) {
        return E.Enc(pk, mL);
```

```
Game Right(PubKeyEnc E) {
    E.PublicKey pk;
    E.SecretKey sk;
   Void Initialize() {
        E.PublicKey * E.SecretKey k = E.KeyGen();
        pk = k[0];
        sk = k[1];
    E.PublicKey PK() {
        return pk;
    E.Ciphertext ENC(E.Message mL, E.Message mR) {
        return E.Enc(pk, mR);
```

4. State the KEM-DEM scheme

```
Scheme Hyb(KEM K, SymEnc E) extends PubKeyEnc {
                                                            requires K.SharedSecret subsets E.Key;
    such that KEM.\mathcal{M} = \mathsf{DEM}.\mathcal{K}
        \mathsf{Hyb}.\mathcal{K} = \mathsf{KEM}.\mathcal{K}
                                                            Set PublicKey = K.PublicKey;
                                                            Set SecretKey = K.SecretKey;
       \mathsf{Hyb}.\mathcal{M} = \mathsf{DEM}.\mathcal{M}
                                                            Set Message = E.Message;
         \mathsf{Hyb}.\mathcal{C} = \mathsf{KEM}.\mathcal{C} \times \mathsf{DEM}.\mathcal{C}
                                                            Set Ciphertext = K.Ciphertext * E.Ciphertext;
                                                            PublicKey * SecretKey KeyGen() {
Hyb.KeyGen = KEM.KeyGen
                                                                 return K.KeyGen();
Hyb.Enc(PK, M):
                                                            Ciphertext Enc(PublicKey pk, Message m) {
                                                                 K.Ciphertext * K.SharedSecret x = K.Encaps(pk);
  (C_{\text{kem}}, K) \leftarrow \mathsf{KEM}.\mathsf{Encaps}(PK)
                                                                 K.Ciphertext c_{kem} = x[0];
                                                                 E.Key k_{dem} = x[1];
  C_{\text{dem}} \leftarrow \mathsf{DEM}.\mathsf{Enc}(K,M)
                                                                 E.Ciphertext c_dem = E.Enc(k_dem, m);
                                                                 return [c_kem, c_dem];
  return (C_{\text{kem}}, C_{\text{dem}})
Hyb.Dec(SK, (C_{\text{kem}}, C_{\text{dem}})):
                                                            Message Dec(SecretKey sk, Ciphertext c) {
                                                                 K.Ciphertext c_kem = c[0];
  K := \mathsf{KEM.Decaps}(SK, C_{\mathrm{kem}})
                                                                 E.Ciphertext c_dem = c[1];
                                                                 K.SharedSecret k_dem = K.Decaps(sk, c_kem);
  if K == \bot: return \bot
                                                                 return E.Dec(k_dem, c_dem);
  return \mathsf{DEM}.\mathsf{Dec}(K,C_{\mathrm{dem}})
```

* This
ProofFrog
modeling
doesn't
capture
rejection for
simplicity
(but could)

5. Proof: Setting up the theorem statement

• First we list all the sets and primitives used in the theorem statement:

```
let:
      Set SymMessageSpace;
      Set KEMSharedSecretSpace;
      Set SymCiphertextSpace;
     Set KEMCiphertextSpace;
Sets ≺
     Set PubKeySpace;
     Set SecretKeySpace;
 Primitives
      SymEnc E = SymEnc(SymMessageSpace, SymCiphertextSpace, KEMSharedSecretSpace);
     KEM K = KEM(KEMSharedSecretSpace, KEMCiphertextSpace, PubKeySpace, SecretKeySpace);
                                                 Notice the DEM secret key space is
     Hyb H = Hyb(K, E);
                                                equal to the KEM shared secret space
        Target scheme
```

5. Proof: Theorem statement

Now we can state the security assumptions on the primitives:

```
assume:
   OTS(E);
   CPAKEM(K);
```

And the goal of the theorem:

```
theorem:
CPA(H);
```

Game o: KEM-DEM scheme in PKE CPA-left game

Game 1: Use random KEM shared secret instead of real

- Reduction R1 against KEM CPA security game
 - R1 with KEM-CPA-real = Game o
 - R1 with KEM-CPA-ideal = Game 1

Game 2: Encrypt right message instead of left (under random key)

- Reduction R2 against DEM OTS security game
 - R2 with DEM-OTS-left = Game 1
 - R2 with DEM-OTS-right = Game 2

Game 3: Use real KEM shared secret instead of random

- Reduction R3 against KEM CPA security game
 - R3 with KEM-CPA-ideal = Game 2
 - R3 with KEM-CPA-real = Game 3
- Game 3 = KEM-DEM scheme in PKE-CPA-right game

```
games:
   // Game 0
   CPA(H).Left;
   CPAKEM(K).Real compose R1(E, K, H);
   // Game 1
   CPAKEM(K).Ideal compose R1(E, K, H);
   OTS(E).Left compose R2(E, K, H);
   // Game 2
   OTS(E).Right compose R2(E, K, H);
   CPAKEM(K).Ideal compose R3(E, K, H);
   // Game 3
   CPAKEM(K).Real compose R3(E, K, H);
   CPA(H).Right;
```

^{*} Minor simplification of ProofFrog notation: all game lines should have "against CPA(H). Adversary" at the end

```
games:
     // Game 0
    CPA(H).Left;
CPAKEM(K).Real compose R1(E, K, H);
     CPA(H).Left;
     // Game 1
    CPAKEM(K).Ideal compose R1(E, K, H);
OTS(E).Left compose R2(E, K, H);
     // Game 2
    OTS(E).Right compose R2(E, K, H);
CPAKEM(K).Ideal compose R3(E, K, H);
     // Game 3
    CPAKEM(K).Real compose R3(E, K, H);
     CPA(H).Right;
```

Code-wise equivalence steps:

ProofFrog checks that these steps are code-wise equivalent by

- inlining the scheme & reduction into the game
- canonicalizing each game
- comparing the programs as strings

^{*} Minor simplification of ProofFrog notation: all game lines should have "against CPA(H). Adversary" at the end

```
games:
    // Game 0
    CPA(H).Left;
    CPAKEM(K).Real compose R1(E, K, H);
    // Game 1
    CPAKEM(K).Ideal compose R1(E, K, H);
    OTS(E).Left compose R2(E, K, H);
    // Game 2
    OTS(E).Right compose R2(E, K, H);
    CPAKEM(K).Ideal compose R3(E, K, H);
    // Game 3
    CPAKEM(K).Real compose R3(E, K, H);
    CPA(H).Right;
```

Indistinguishable by assumption steps:

ProofFrog checks that these steps are indistinguishable by an assumption in the theorem statement:

- assume: CPAKEM(K) implies CPAKEM(K).Real ≈ CPAKEM(K).Ideal
- assume: OTS(E) implies
 OTS(E).Left ≈ OTS(E).Right

^{*} Minor simplification of ProofFrog notation: all game lines should have "against CPA(H). Adversary" at the end

```
games:
    // Game 0
   CPA(H).Left;
    CPAKEM(K).Real compose R1(E, K, H);
    // Game 1
   CPAKEM(K).Ideal compose R1(E, K, H);
   OTS(E).Left compose R2(E, K, H);
    // Game 2
   OTS(E).Right compose R2(E, K, H);
   CPAKEM(K).Ideal compose R3(E, K, H);
    // Game 3
   CPAKEM(K).Real compose R3(E, K, H);
   CPA(H).Right;
```

All that we have left to do is write out the three reductions R1, R2, R3

^{*} Minor simplification of ProofFrog notation: all game lines should have "against CPA(H). Adversary" at the end

5. Proof: Reduction R1

```
PK := KEM.CPA.PK()
PKE.CPA.PK():
   return PK
PKE.CPA.ENC(M_L, M_R):
   (C_{\text{kem}}, K) := \text{KEM.CPA.ENC()}
   C_{\text{dem}} \leftarrow \mathsf{DEM}.\mathsf{Enc}(K, M_L)
   return (C_{\text{kem}}, C_{\text{dem}})
```

```
Reduction R1(SymEnc E, KEM K, Hyb H) compose CPAKEM(K) {
    H.PublicKey PK() {
        return challenger.PK();
    H.Ciphertext ENC(H.Message mL, H.Message mR) {
        K.Ciphertext * K.SharedSecret y = challenger.ENC();
        K.Ciphertext c_kem = y[0];
        K.SharedSecret k_dem = y[1];
        E.Ciphertext c_dem = E.Enc(k_dem, mL);
        return [c_kem, c_dem];
```

5. Proof: Reduction R2

```
(PK, SK) := KEM.KeyGen()
PKE.CPA.PK():
   return PK
PKE.CPA.ENC(M_L, M_R):
   (C_{\mathrm{kem}},-) := \mathsf{KEM}.\mathsf{Encaps}(PK)
   C_{\text{dem}} := \text{SKE.OTS.ENC}(M_L, M_R)
   return (C_{\text{kem}}, C_{\text{dem}})
```

```
Reduction R2(SymEnc E, KEM K, Hyb H) compose OTS(E) {
    K.PublicKey pk;
    K.SecretKey sk;
    Void Initialize() {
        K.PublicKey * K.SecretKey k = K.KeyGen();
        pk = k[0];
        sk = k[1];
    H.PublicKey PK() {
        return pk;
    H.Ciphertext ENC(H.Message mL, H.Message mR) {
        K.Ciphertext * K.SharedSecret x = K.Encaps(pk);
        K.Ciphertext c_{kem} = x[0];
        E.Ciphertext c_dem = challenger.ENC(mL, mR);
        return [c_kem, c_dem];
```

5. Proof: Reduction R3

```
PK := KEM.CPA.PK()
PKE.CPA.PK():
   return PK
PKE.CPA.ENC(M_L, M_R):
   (C_{\mathrm{kem}},K):=\mathtt{KEM.CPA.ENC}()
   C_{\mathrm{dem}} := \mathsf{DEM}.\mathsf{Enc}(K, M_R)
   return (C_{\text{kem}}, C_{\text{dem}})
```

```
Reduction R3(SymEnc E, KEM K, Hyb H) compose CPAKEM(K) {
   H.PublicKey PK() {
        return challenger.PK();
    H.Ciphertext ENC(H.Message mL, H.Message mR) {
        K.Ciphertext * K.SharedSecret y = challenger.ENC();
        K.Ciphertext c_kem = y[0];
        K.SharedSecret k_dem = y[1];
        E.Ciphertext c_dem = E.Enc(k_dem, mR);
        return [c_kem, c_dem];
```

We're done!

```
> proof_frog prove Hyb-is-CPA.proof
==STEP 1===
Current: CPA(H).Left;
Hop To: Game0(K, E, H);
SIMPLIFYING CURRENT GAME
Game Left() {
Inline Success!
Proof Succeeded!
```

- 3 files for primitive syntax: 27 LoC
- 3 files for security definitions: 83 LoC
- 1 file for scheme: 26 LoC
- 1 file for proof: 75 LoC

Took me about 30 minutes to write it

Other examples from Joy of Cryptography in ProofFrog

Primitives and Associated Security Definitions.

- Symmetric Encryption Schemes [14, Definition 2.1]
 - Correctness [14, Definition 2.2]
 - One-Time Uniform Ciphertexts [14, Definition 2.5]
 - One-Time Secrecy [14, Definition 2.6]
 - CPA-security [14, Definition 7.1]
 - CPA\$-security [14, Definition 7.2]
 - CCA-security [14, Definition 9.1]
 - CPA\$-security [14, Definition 9.2]
- Pseudorandom Generators (PRGs) and security [14, Definition 5.1]
- Pseudorandom Functions (PRFs) and security [14, Definition 6.1]
- Message Authentication Codes (MACs) [14, Definition 10.1] and security [14, Definition 10.2]
- Public Key Encryption Schemes [14, Chapter 15]
 - Correctness [14, Chapter 15]
 - One-Time Secrecy [14, Definition 15.4]
 - CPA-security [14, Definition 15.1]
 - CPA\$-security [14, Definition 15.2]

Completed Proofs.

- A symmetric encryption scheme that encrypts twice with a one-time-pad using independent keys has one-time uniform ciphertexts. [14, Claim 2.13].
- If a symmetric encryption scheme has one-time uniform ciphertexts, then it has one-time secrecy. [14, Theorem 2.15]
- If a symmetric encryption scheme Σ has one-time secrecy, then a symmetric encryption scheme which encrypts by returning a pair of ciphertexts (c_1,c_2) where $c_i=\Sigma.\mathrm{Enc}(k_i,m)$ also has one-time secrecy. [14, Exercise 2.13]
- A symmetric encryption scheme Σ has one-time secrecy if and only if an encryption of a provided message with a one-time key is indistinguishable from an encryption of a random message with a one-time key. [14, Exercise 2.14]
- A symmetric encryption scheme Σ has one-time secrecy if and only if the ciphertext pair (c_L, c_R) is indistinguishable from the ciphertext (c_R, c_L) where m_L and m_R are encrypted with one-time keys. [14, Exercise 2.15]
- The Pseudo-OTP symmetric encryption scheme which uses a secure pseudo-random generator G to encrypt messages as $G(k) \oplus m$ provides one-time secrecy. [14, Claim 5.4]
- A length-tripling PRG which, when given a seed s, uses a length-doubling PRG G to compute $x \parallel y = G(s)$, $u \parallel v = G(y)$ and returns $x \parallel u \parallel v$ is secure assuming G's security. [14, Claim 5.5]
- Given a length-tripling PRG G, a PRG H which, when given a seed s, computes $x \parallel y \parallel z = G(s)$ and returns $G(x) \parallel G(z)$ is secure. [14, Exercise 5.8.a]
- Given a length-tripling PRG G, a PRG H which, when given a seed s, computes $x \parallel y \parallel z = G(s)$ and returns $x \parallel y$ is secure. [14, Exercise 5.8.b]
- Given a length-tripling PRG G, a PRG H which, when given a seed s, computes x = G(s), $y = G(0^{\lambda})$ and returns $x \oplus y$ is secure. [14, Exercise 5.8.e]

- Given a length-tripling PRG G, a PRG H which, when given a seed $s_L \parallel s_R$, computes $x = G(s_L)$, $y = G(s_R)$ and returns $x \oplus y$ is secure. [14, Exercise 5.8.f]
- Given a length-doubling PRG G, a PRG H which, when given a seed s, computes $x \parallel y = G(s)$, w = G(y) and returns $(x \oplus y) \parallel w$ is secure. [14, Exercise 5.10]
- If a symmetric encryption scheme is CPA\$-secure, then it is also CPA-secure. [14, Claim 7.3]
- A symmetric encryption scheme has CPA security if and only if encryptions of provided messages using the same key are indistinguishable from encryptions of random messages using the same key. [14, Exercise 7.13]
- If a symmetric encryption scheme is CCA\$-secure, then it is also CCA-secure. [14, Exercise 9.6]
- If Σ is a CPA-secure symmetric encryption scheme and M is a secure MAC, then the encrypt-then-MAC construction is CCA-secure. [14, Claim 10.10]
- If a public-key encryption scheme has one-time secrecy, then it is also CPA-secure. [14, Claim 15.5]
- If Σ_{sym} is a one-time-secret symmetric-key encryption scheme and Σ_{pub} is a CPA-secure, then hybrid encryption which generates a one-time symmetric key, encrypts the symmetric key under Σ_{pub} , encrypts the message under the one-time symmetric key, and returns the pair of ciphertexts is a CPA-secure public-key encryption scheme. [14, Claim 15.9]
- If Σ_S and Σ_T are symmetric encryption schemes, where Σ_T has one-time uniform ciphertexts, then the encryption scheme Σ which encrypts a message first with Σ_S , and then encrypts the resulting ciphertext with Σ_T , also has one-time uniform ciphertexts.
- If Σ_S and Σ_T are symmetric encryption schemes, where Σ_T is CPA\$-secure, then the encryption scheme Σ which encrypts a message first with Σ_S , and then encrypts the resulting ciphertext with Σ_T , is also CPA\$-secure.

Neato: Variable-length hybrid argument in ProofFrog

```
games:
    CPA(E).Left;
    induction(i from 1 to q) {
        OneTimeSecrecy(E).Left compose R(E, i);
        OneTimeSecrecy(E).Right compose R(E, i);
    CPA(E).Right;
```

ProofFrog has many limitations

- No formal-verified base or precise semantics
- Very tied to the game-hopping formalism
- Restricted domain specific language
- Very little understanding of mathematics
- No manual intervention if proof engine fails
- No attempt yet at protocols with complex states
- Minimal tooling and documentation
- Minimal developer community

Q: What is the future of ProofFrog? A: Uncertain; looking for feedback

Continue developing ProofFrog as a formal verification engine?

- Improve expressivity
- Option to fork out to EasyCrypt when stuck
- Export to LaTeX

Transition to a tool to support pen-and-paper cryptographers?

- Manage game source code for penand-paper proofs in a domai specific language
- Some type-checking and minimal validation
- Export to LaTeX

Want to get started with ProofFrog?

- Easy to install with Python (pip3 install proof_frog)
- Engine and examples at https://github.com/ProofFrog/
- (Hopefully) fun way to write your first formally verified proof!
- Be aware of limitations
- Ask questions on Github Discussions
- Contact me (dstebila@uwaterloo.ca) if you have thoughts on the possible directions (formal verification engine? pen-and-paper support tool?) and want to help out

1) Primitives: KEM-DEM Security Pen & Paper Proof 2) KEM-DEM & more in ProofFrog

CAPS 2025

https://prooffrog.github.io/

https://eprint.iacr.org/2025/418

FACULTY OF

Douglas Stebila

Joint work with Ross Evans and Matthew McKague

