1) Primitives: KEM-DEM Security Pen & Paper Proof
2) KEM-DEM & more in Prooffrog

CAPS 2025
https://prooffrog.github.io/
https://eprint.iacr.org/2025/418 .

\Y
Douglas Stebila J <l
Joint work with Ross Evans A R |
and Matthew McKague N
W UNIVERSITY OF FACULTY OF NSERC We acknowledge the support of the Natural Sciences and

@ WAT E R LOO MATHEMATICS CRONG Engineering Research Council of Canada (NSERC).

https://prooffrog.github.io/
https://eprint.iacr.org/2025/418

Primitives: KEM-DEM Security
Pen & Paper Proof

CAPS 2025
https://prooffrog.github.io/caps—2025.html

Douglas Stebila

W UNIVERSITY OF FACULTY OF NSERC We acknowledge the support of the Natural Sciences and

@ WAT E R LOO MATHEMATICS CRONG Engineering Research Council of Canada (NSERC).

https://prooffrog.github.io/caps-2025.html

Recap: Provable Security
and Game Hopping Proofs

R
Recap of provable security

Main approach of reductionist security:

1. Define the syntax of the relevant primitives

2. Define security experiments for the relevant primitives
3. Specify your scheme

4. State a theorem bounding the success probability for a certain class of
adversaries in breaking security of your scheme

= usually depending on the success probability of breaking security of underlying primitives (and
other terms)

5. Prove the theorem

R
Code-based game-playing proofs

= Papers
= Shoup 2004
= Bellare & Rogaway 2004

» Textbooks

= Katz & Lindell, Introduction to Modern Cryptography
= Rosulek, Joy of Cryptography
= Boneh & Shoup, A Graduate Course in Applied Cryptography

PAGE 5

CODE-BASED
GAME-PLAYING PROOFS

A security definition is an experiment
(expressed in pseudocode) with oracles

PAGE 6

*
Different ways of structuring the experiment & oracles

1. main function that explicitly calls adversary with specified
oracles

o. 1nitialize / adversary access to all oracles / finalize

3. Initialize / adversary access to all oracles + direct adversary
output

PAGE 7

Different experiment styles

1. single-game win/lose
(secure if success probability = 0)

2. single-game hidden bit guessing
(secure 1if success probability = 1/2)

3. two-game indistinguishabilil?f:
left/right, real/random, real/ideal, ...
(secure if distinguishing advantage = 0)

Can even do this style for traditional win/lose games like
unforgeability: e.g. "check" oracle that runs verify (real)
versus rejects if not on a list (ideal)

R
Terminology

» A library is a collection of algorithms (each with
input/output interfaces) and private variables that the
algorithms can access.

= An algorithm can call into a library. The combined program
is denoted A ¢ L

PAGE 9

*
Libraries for security definitions

= We will use libraries to formalize a security definition:
= private variables for the experiment
= initialize routine

= oracles that the adversary can call

» For a scheme 2. in a two-game indistinguishability experiment (Lie fts Em’ght)
we want to show that, for all programs A

Pr|A ¢ leeft = true] ~ Pr[A ¢ [Eight = true|

PAGE 10

R
Terminology

= Inlining library £ into program (or library) A: inserting the code from library £
into another program 4 in every place where a subroutine of library £ is called

= Interchangeable: libraries £;and £ are interchangeable (denoted £, = £5)
if, for all programs 4 it holds that

Pr|A ¢ L1 = true| = Pr[A ¢ Ly = true]

= Interchangeability comes up in "rewriting steps" in game-hopping proofs.)

= One way of showing interchangeability is to show that £1 and L5 is to show that they are
"code-wise equivalent"”, meaning they have the same source code, or "equivalent” source code

= Indistinguishability: libraries £; and £, are indistinguishable if, for all
programs A it holds that

Pr[A o L = true|] = Pr[A ¢ Ly = true]

PAGE 11

*
Game-hopping proofs

Goal: Show Pr[A¢ Liﬁ = true| =~ Pr|A ¢ L’ight = true]
= Game O = Elze ¢ 18 the inlining of the code for your scheme > into security experiment Liett

= Game 1 is another game (library) typically formed by changing some lines of Game 0

= Game 1 and Game 0 could be indistinguishable for one of several reasons:
= They are in fact interchangeable (code-wise equivalent)
= They are indistinguishable under some computational assumption

= They are indistinguishable under some statistical argument

PAGE 12

*
Game-hopping proofs

= Suppose we want to show Game 0 and Game 1 are indistinguishable under some
computational assumption.

» Namely suppose scheme I satisfies a two-game security notion (Met, Mrignt)

Pr|B o /\/llI;ft = true] =~ Pr[B¢ /\/lfight = true]

= We define a reduction R that is an adversary to (MZI; fts /\/lql;-g 1+) such that

Ro/\/lift = (GGameg
Roj\/l?%ght = Game;

= We can conclude that Game 0 and Game 1 are indistinguishable assuming I' is secure

PAGE 13

*
Game-hopping proofs

Goal: Show Pr[A¢ Liﬁ = true| =~ Pr|A ¢ L’ight = true]

= Repeat game hops as many times as needed until we arrive at a Game n such that

by

Game,, = L} 1,

To summarize, a proof consists of

1. Specifying each intermediate game (some can technically be omitted if they are implied
by the reductions)

2. Justifying each game hop
= If using indistinguishability:
1. Specifying the reduction for each hop

2. Justifying that each reduction inlined to its left/right game is code-wise equivalent to the previous/next
game

PAGE 14

KEM-DEM is IND-CPA

in the Joy of Cryptography style
with figures by Mike Rosulek
https://garbledcircus.com/kemdem/left-right

https://garbledcircus.com/kemdem/left-right

*
Goal: KEM-DEM is IND-CPA

Construction: Security:
Build a public key encryption Show that the KEM-DEM
scheme by approach yields an IND-CPA-

secure public key encryption

= using a key encapsulation .
5 Y b scheme assuming that

mechanism to compute a shared

secret, » the KEM is IND-CPA-secure
= and use that shared secret in a = and the symmetric encryption
symmetric encryption scheme scheme has one-time secrecy

(data encapsulation
mechanism) to encrypt a
message. oAGE 16

Goal: KEM-DEM is IND-CPA

Idea of the proof:
» Game 0 = Starting game: Encrypt left message under real key
= Game 1: Use random KEM shared secret instead of real

» Game 2: Encrypt right message instead of left (under random
key)

» Game 3: Use real KEM shared secret instead of random

» Game 3 = Ending game: Encrypt right message under real key

PAGE 17

*
If we want to be thorough, we need to:

1. Symmetric encryption scheme: define (a) syntax; (b) one-time secrecy

2. Key encapsulation mechanism: define (a) syntax; (b) IND-CPA security
3. Public key encryption scheme: define (a) syntax; (b) IND-CPA security
4. State the KEM-DEM scheme

5. Give a game-hopping proof for IND-CPA security of KEM-DEM

1. State intermediate games (can be implicit)
2. Give reductions to security of KEM or DEM
3. Justify interchangeability / indistinguishability

6. State the theorem we just proved

PAGE 18

*
Opinionated choices for this proof

In the style of Joy of Cryptography by Mike Rosulek

All security experiments are two-game indistinguishability: left/right,
real/random

All security experiments structured with initialize / adversary access to all oracles
+ direct adversary output

Adversary gets setup values via oracles rather than direct input

PAGE 19

B
1.a) Syntax of symmetric encryption scheme

A symmetric-key encryption (SKE) scheme consists of the following

algorithms:

e Enc: a (possibly randomized) algorithm that takes a key K € K and
plaintext M € M as input, and outputs a ciphertext C € C.

e Dec: a deterministic algorithm that takes a key K € K and ciphertext C €

C as input, and outputs a plaintext M € M.

PAGE 20

*
1.b) One-time secrecy of symmetric encryption

An encryption scheme X has computational one-time secrecy (cOTS) if the

following two libraries are indistinguishable:

e — o i
SKE.OTS.ENC(M,, MR): SKE.OTS.ENC(M,, MR):
K« X.K = K« 32K
C := X.Enc(K, My) C := ¥.Enc(K, Mg)
return C return C

Note that Lgye-ots-rang Makes no restriction about the lengths of M; and Mp.
Thus, the definition is suitable when all plaintexts have a known, fixed

length.

B
2.a) Syntax of key encapsulation mechanism

A key encapsulation mechanism (KEM) consists of the following algorithms:

e KeyGen: same as in a PKE scheme, a randomized algorithm that takes no

inputs and outputs a keypair (PK, SK).

e Encaps: arandomized algorithm that takes only a public key PK as input

and returns both a ciphertext C' € C and plaintext M € M.

e Decaps: same as in a PKE scheme, a deterministic algorithm that takes a
private key SK and ciphertext C € C as input, and returns a plaintext

M € M (or raises an error).

R
2.b) IND-CPA security of a KEM

A KEM X has security against chosen-plaintext attacks (CPA security) if

the following two libraries are indistinguishable:

. = ‘CEem-c a-ideal
£Eem-cpa-real Inltlallze g

(PK,SK) := ¥.KeyGen()
(PK,SK) := X.KeyGen()

FExperiment | KEM.CPA.PK(): Adversary gets
KEM.CPA.PK(): ot public key via
private 1 return PK) oracle
return PK variables | =

KEM.CPA.ENC():
(C,—) := X.Encaps(PK)
M « XM
return (C, M)

KEM.CPA.ENC():
(C, M) := X.Encaps(PK)
return (C, M)

B
3.a) Syntax of public key encryption

A public-key encryption (PKE) scheme consists of the following algorithms:

e KeyGen: arandomized algorithm that takes no inputs (besides the
security parameter, which we never write explicitly) and outputs a key

pair (PK,SK), where PK is a public key and SK is a private key.

e Enc: arandomized algorithm that takes a public key PK and plaintext

M € M as input and returns a ciphertext C € C.

e Dec: a deterministic algorithm that takes a private key SK and ciphertext

C € C as input, and returns a plaintext M € M (or raises an error).

R
3.b) IND-CPA security of a PKE

A PKE scheme X has security against chosen-plaintext attacks (CPA

security) if the following two libraries are indistinguishable:

3 %
kae-cpa-left ‘Cpke-cpa-right

(PK,SK) := X.KeyGen() (PK,SK) := X.KeyGen()

PKE.CPA.PK(): PKE.CPA.PK():
return PK 2| return PK
PKE.CPA.ENC(ML,, MR): PKE.CPA.ENC(ML,, MR):
C := X.Enc(PK, Mp) C := X.Enc(PK, Mg)
return C return C

As above, the definition is suitable when plaintexts have a known, fixed
length, since PKE.CPA.ENC Of Lpke-cpa-rand dO€S not restrict the lengths of My,
and Mp.

*
4. State the KEM-DEM scheme

Let KEM be a KEM scheme and DEM be a SKE scheme, such that KEM.M =
DEM.K (i.e., KEM payloads can be interepreted as keys in DEM). Then hybrid
encryption Hyb = Hyb[KEM, DEM] is defined by the following algorithms:

Hyb.X = KEM.K
Hyb.M = DEM.M
Hyb.C = KEM.C x DEM.C

Hyb.KeyGen = KEM.KeyGen

Hyb.Enc(PK, M): Hyb.Dec(SK, (Ckem; Cdem)):
(Ckem, K) « KEM.Encaps(PK) K := KEM.Decaps(SK, Cyen)
Ciem « DEM.Enc(K, M) if K == l:return L

return (Cxem, Cdem) return DEM.Dec(K, Cyem)

S E—
B. Proof: Game 0: Inline KEM-DEM scheme into CPA-left

Hyb

The starting point is £y . ef-

Hyb
[’pke-cpa-left

/ Hyb.KeyGen():
(PK,SK) := KEM.KeyGen()

PKE.CPA.PK():
return PK

PKE.CPA.ENC(M,, MR):

/ Hyb.Enc(PK, My):
(Ckem, K) «— KEM.Encaps(PK)
Ciem « DEM.Enc(K, M)

return (Crxem; Cdem)

PAGE 27

D
b. Proof: Game 0 is equivalent to a reduction calling

into the CPA-real game for the KEM

Rewrite in a logically equivalent way so that an instance of L{§\ . .ca @PPe€ArsS.

ﬁKEM
PK := KEM.CPA.PK() kem-cpa-real
PKE.CPA.PK(): (PK,SK) := KEM.KeyGen()
return PK KEM.CPA.PK():

o
PKE.CPA.ENC(M,, Mg): return PK

(Ckem; K) := KEM.CPA.ENC() KEM.CPA.ENC():
Ciem «— DEM.Enc(K, ML) (C, M) := KEM.Encaps(PK)
return (Ciem; Cem) return (C, M)

PAGE 28

D
5. Proof: Hop to Game 1 by switching the KEM CPA-real

game to CPA-ideal

KEM is CPA-secure, so LKEM . can be replaced by £

kem-cpa-rea

KEM
kem-cpa-ideal

 with only negligible effect on the

calling program.

KEM
‘Ckem-cpa-ideal

PK := KEM.CPA.PK()
(PK,SK) := KEM.KeyGen()
PKE.CPA.PK():

PKE.CPA.PK():
return PK —()

return PK
PKE.CPA.ENC(M},, MR):

KEM.CPA.ENC():
(C,—) := KEM.Encaps(PK)
M « KEM.M
return (C, M)

(Ckem, K) := KEM.CPA.ENC()
Cdem «— DEM.Enc(K, M1)

return (Cxem, Cdem)

PAGE 29

5. Proof: Game 1: Write out Game 1 explicitly by inlining
previous slide

Inline the instance of LN .. igeal-

(PK,SK) := KEM.KeyGen()

PKE.CPA.PK():

return PK

PKE.CPA.ENC(M},, MR):
(Ckem, —) := KEM.Encaps(PK)
K « KEM.M
C4em « DEM.Enc(K, M)

return (Ckem; Cdem)

PAGE 30

b. Proof: Game 1: Note that KEM shared secret space
equals symmetric key encryption space

By our assumption, KEM.M = DEM.K.

(PK,SK) := KEM.KeyGen()

PKE.CPA.PK():

return PK

PKE.CPA.ENC(M},, MR):
(Cxem; —) := KEM.Encaps(PK)
K « DEM.K
C4em « DEM.Enc(K, M)

return (Ckem’ Cdem)

PAGE 31

D
b. Proof: Game 1is equivalent to a reduction calling into

the 0TS-left game for the DEM

Rewrite in a logically eqivalent way, so that an instance of £, ...t aPP€Aars.

(PK,SK) := KEM.KeyGen()

PKE.CPA.PK(): L orots-teft
T Bl SKE.OTS.ENC(My,, Mg):
PKE.CPA.ENC(M,, MR): ° K« DEM.K
(Cxem, —) := KEM.Encaps(PK) C := DEM.Enc(K, My)
return C

Cdem = SKE.OTS.ENC(ML, MR)

return (Cxem, Cdem)

PAGE 32

D
b. Proof: Hop to Game 2 by switching the DEM 0TS-left

game to OTS-right

DEM has cOTS security, so £2EV can be replaced by £2EM . with only negligible effect on

ske-ots-left ske-ots-righ

the calling program.

(PK,SK) := KEM.KeyGen()

PKE.CPA.PK(): ‘Csl?lfepﬂots-right
return PK SKE.OTS.ENC(My,, Mg):
PKE.CPA.ENC(M, MR): °l K« DEMK
(Ckem, —) := KEM.Encaps(PK) C := DEM.Enc(K, Mg)

Ciem = SKE.OTS.ENC(M[, M) return C

return (Cxem, Cdem)

PAGE 33

b. Proof: Game 2: Write out Game 2 explicitly by inlining
previous slide

Inline the instance of L8 ignt-

(PK,SK) := KEM.KeyGen()

PKE.CPA.PK():

return PK

PKE.CPA.ENC(M},, MR):
(Cxem; —) := KEM.Encaps(PK)
K « DEM.K
Cem := DEM.Enc(K, Mg)

return (Ckem’ Cdem)

Now we need to undo the
use of a random encryption
key

PAGE 34

b. Proof: Game 2: Note that KEM shared secret space
equals symmetric key encryption space

The next few steps are identical to some previous steps, but taken in reverse order.

(PK,SK) := KEM.KeyGen()

PKE.CPA.PK():

return PK

PKE.CPA.ENC(M},, MR):
(Cxem; —) := KEM.Encaps(PK)
K « DEM.K
Cem := DEM.Enc(K, M)

return (Ckem’ Cdem)

PAGE 35

b. Proof: Game 2 is equivalent to a reduction calling
into the CPA-ideal game for the KEM

KEM
‘Ckem-cpa-ideal

PK := KEM.CPA.PK()
(PK,SK) := KEM.KeyGen()

PKE.CPA.PK():

PKE.CPA.PK():

return PK
return PK

PKE.CPA.ENC(M},, MR):

KEM.CPA.ENC():
(C,—) := KEM.Encaps(PK)
M « KEM.M
return (C, M)

(Ckem, K) := KEM.CPA.ENC()
Cdem := DEM.ENnc(K, MR)

return (Cxem, Cdem)

PAGE 36

D
5. Proof: Hop to Game 3 by switching the KEM CPA-ideal

game to CPA-real

ﬁKEM

PK := KEM.CPA.PK() kem-cpa-real
PKE.CPA.PK(): (PK,SK) := KEM.KeyGen()
return PK PKE.CPA.PK():

o
PKE.CPA.ENC(M,, Mg): return PK

(Ckem, K) := KEM.CPA.ENC() KEM.CPA.ENC():
Ciem := DEM.Enc(K, M) (C, M) := KEM.Encaps(PK)
return (Cyem, Cdem) return (C, M)

PAGE 37

b. Proof: Game 3: Write out Game J explicitly by inlining
previous slide

(PK,SK) := KEM.KeyGen()

PKE.CPA.PK():

return PK

PKE.CPA.ENC(M},, MR):
(Ckem, K) := KEM.Encaps(PK)
Cdem := DEM.ENnc(K, MR)

return (Cxem, Cdem)

PAGE 38

b. Proof: Game 3 is equivalent to the inlining of the
KEM-DEM scheme into the PKE CPA-right game

. . Hyb
What remains is exactly £pc coa-rignt-

Hyb
Lpl\(/e-cpa-right
/ Hyb.KeyGen():
(PK,SK) := KEM.KeyGen()

PKE.CPA.PK():

return PK

PKE.CPA.ENC(M,, MR):

/ Hyb.Enc(PK, MR):
(Ckem, K) := KEM.Encaps(PK)
Cdem = DEMEnc(K, MR)

return (Crxem; Cdem)

PAGE 39

5. Proof summary

Game 0: KEM-DEM scheme in PKE CPA-
left game

Game 1: Use random KEM shared secret
instead of real

= Reduction R1 against KEM CPA security
game

= R1 with KEM-CPA-real = Game o
= R1 with KEM-CPA-ideal = Game 1

Game 2: Encrypt right message instead of
left (under random key)

= Reduction R2 against DEM OTS security
game

= R2 with DEM-OTS-left = Game 1
= R2 with DEM-OTS-right = Game 2

Game 3: Use real KEM shared secret
instead of random

= Reduction R3 against KEM CPA security
game

= R3 with KEM-CPA-ideal = Game 2
= R3 with KEM-CPA-real = Game 3

= Game 3 = KEM-DEM scheme in PKE-
CPA-right game

*
6. Theorem statement

Theorem. Let KEM be a key encapsulation mechanism and DEM be a sym-
metric encryption scheme such that KEM.M = DEM.K. Let Hyb be the hybrid

KEM-DEM scheme built from KEM and DEM. For every adversary A, there
exists reductions R1, Rs, R3 (with small runtime) such that

Advyigs (A) < Advigem (R1') + Advpem(R3') + Advgem(R3)

PAGE 41

KEM-DEM &more in Prooffrog

CAPS 2025
https://prooffrog.github.io/
https://eprint.iacr.org/2025/418 .

\y —
\Y
Douglas Stebila J £
Joint work with Ross Evans 70N O ¢
and Matthew McKague LN
W UNIVERSITY OF FACULTY OF NSERC we acknowledge the support of the Natural Sciences and

@ WAT E R LOO MATHEMATICS CRONG Engineering Research Council of Canada (NSERC).

https://prooffrog.github.io/
https://eprint.iacr.org/2025/418

*
Prooffrog

= A new tool for representing and checking cryptographic game-hopping
proofs in the computational model

= Focus on accessibility & syntax for pen-and-paper cryptographers

= Limited in scope, strength, expressivity, & more compared to other
tools

= Able to verify several Joy of Cryptography-style textbook examples

= Not (yet) suitable for richer research-level proofs

43

*
ProoffFrog's approach

The author of the proof states the reductions for each hop and optionally intermediate
games.

ProofFrog tries to evaluate the validity of each game hop by checking code-wise
equivalence of each step

Code-wide equivalence is checked by taking each game to be compared and applying a
series of automated transformations to try to coerce the game into a "canonical
form", and then comparing these canonical forms as strings

= ProofFrog works with Abstract Syntax Trees

= Examples of transformations: canonlcahzlng variable names, sorting sequence of statements,
removing unused variables & statements, .

If ProofFrog's automated transformations manage to yield same canonical form: €

If ProofFrog's automated transformations don't suffice: out of luck

PAGE 44

ProoffFrog engine

See https://eprint.iacr.org/2025/418 for details

Use steps as-is

Section IV

\ 4 \ 4

Read two steps from
hop sequence in

proof file
Apply game checking procedure
for:
- Prior step + first step in the block
here i is replaced with 1
No Is one step an Yes w ; : .
induction bﬁ)ck? - Each hop in the induction block

(fromi=

Are games
indistinguishable by
assumption?

- Final step + first step where i is
replaced with i + 1

- Last step in the block +
subsequent step where i is
replaced with q

1toq)

Apply repeatedly until
no further changes

Expression Level Transformations (V-A)

Apply Instantiation
Transformer
to generate ASTs for
proof hop steps

Symbolic Computation
Simplified Not Operations
User Assumptions
Variable Level Transformations (V-B)
Copy Propagation

v

Verbose Tuple Elimination

Apply Inline
Transformer to
compose reductions if

necessary

Tuple Expansion
Slice Simplification
Duplicated Field Removal

Statement Level Transformations (V-C)
Statement Sorting

Unreachable Code Elimination
Branch Elimination
Unnecessary Field Removal
Branch Collapsing

v

Normalize field and
variable names

Section VI-B

Accept and check
next step.

A

Are game ASTs
identical?

Are game ASTs
identical apart from
conditionals?

Can Z3 ensure No
all conditions are

equivalent?

Section VI-A

Section V

Reject proof.

https://eprint.iacr.org/2025/418

KEM-DEM is IND-CPA

in ProofFrog

https://prooffrog.github.io/caps—-2025.html

https://prooffrog.github.io/caps-2025.html

*
If we want to be thorough, we need to:

1. Symmetric encryption scheme: define (a) syntax; (b) one-time secrecy

2. Key encapsulation mechanism: define (a) syntax; (b) IND-CPA security
3. Public key encryption scheme: define (a) syntax; (b) IND-CPA security
4. State the KEM-DEM scheme

5. Give a game-hopping proof for IND-CPA security of KEM-DEM

1. State intermediate games (can be implicit)
2. Give reductions to security of KEM or DEM
3. Justify interchangeability / indistinguishability

6. State the theorem we just proved

PAGE 47

B
1.a) Syntax of symmetric encryption scheme

A symmetric-key encryption (SKE) scheme consists of the following

algorithms:

e Enc: a (possibly randomized) algorithm that takes a key K € K and
plaintext M € M as input, and outputs a ciphertext C € C.

e Dec: a deterministic algorithm that takes a key K € K and ciphertext C €

C as input, and outputs a plaintext M € M.

Definition is parameterized by some sets

A
(\

Primitive SymEnc(Set MessageSpace, Set CiphertextSpace, Set KeySpace) {
Set Message = MessageSpace;
Set Ciphertext = CiphertextSpace;
Set Key = KeySpace;

Algorithm Ciphertext Enc(Key k, Message m);
signatures | Message Dec(Key k, Ciphertext c);

by

*
1.b) One-time secrecy of symmetric encryption

L?ke-ots-left L?ke-ots-right
SKE.OTS.ENC(M,, MR): SKE.OTS.ENC(M,, MRg):
K « Y. Tl K« XK
C := X.Enc(K, My) C := X.Enc(K, Mg)
return C return C
Game Left(SymEnc E) { Game Right(SymEnc E) {
E.Ciphertext ENC(E.Message mL, E.Message mR) { E.Ciphertext ENC(E.Message mL, E.Message mR) {
E.Key k <- E.Key; E.Key k <- E.Key;
E.Ciphertext ¢ = E.Enc(k, mL); E.Ciphertext ¢ = E.Enc(k, mR);
return c; return c;
¥ ¥
} }

Observe that variables are typed

PAGE 49

B
2.a) Syntax of key encapsulation mechanism

Definition is parameterized by some sets
A

r N\
Primitive KEM(Set SharedSecretSpace, Set CiphertextSpace, Set PKeySpace, Set SKeySpace) {

Set SharedSecret = SharedSecretSpace;
Set Ciphertext = CiphertextSpace;
Set PublicKey = PKeySpace;
Set SecretKey = SKeySpace;
Tuple
PublicKey x SecretKey KeyGen();

Algorithm _ .
. t Ciphertext x SharedSecret Encaps(PublicKey pk);
Signatures SharedSecret Decaps(SecretKey sk, Ciphertext m);
}

PAGE 50

*
2.b) IND-CPA security of a KEM

K.PublicKey pk; \ Experiment private
K.SecretKey sk; variables

e e
Void Initialize() { ‘CEem-cpa-real .
K.PublicKey x K.SecretKey k = K.KeyGen(); (PK,SK) := X.KeyGen()
pk = k[0]; Initialize | (PK,;SK) := X.KeyGen()
sk = k[1]; KEM.CPA.PK():
} KEM.CPA.PK():
.| return PK
return PK ==
K.PublicKey PK() { Adversary gets |
return pk; public key via RN CERENEL) REM CRAENCL)
} oracle (C,—) := X.Encaps(PK)
(C,M) := X.Encaps(PK) Y
K.SharedSecret * K.Ciphertext ENC() { return (C, M) o
K.Ciphertext * K.SharedSecret rsp = K.Encaps(pk); return (C, M)
return rsp;
}

PAGE 51

2.b) IND-CPA security of a KEM

Game Ideal(KEM K) {

cZ

LE : kem-cpa-ideal
em-cpa-rea

(PK,SK) := X.KeyGen()
(PK,SK) := ¥.KeyGen()

KEM.CPA.PK():
KEM.CPA.PK():

return PK

return PK

12

KEM.CPA.ENC():
(C,—) := X.Encaps(PK)
M« ¥ M
return (C, M)

KEM.CPA.ENC():
(C,M) := X.Encaps(PK)
return (C, M)

PAG }

K.PublicKey pk;
K.SecretKey sk;

Void Initialize() {
K.PublicKey * K.SecretKey k = K.KeyGen();
pk = k[0];
sk = k[1];

¥

K.PublicKey PK() {
return pk;

by

K.SharedSecret x K.Ciphertext ENC() {
K.Ciphertext *x K.SharedSecret rsp = K.Encaps(pk);
K.Ciphertext ctxt = rspl0];
K.SharedSecret ss <- K.SharedSecret;
return [ctxt, ss];

B
3.a) Syntax of public key encryption

Primitive PubKeyEnc(Set MessageSpace, Set CiphertextSpace, Set PKeySpace, Set SKeySpace) {
Set Message = MessageSpace;
Set Ciphertext = CiphertextSpace;
Set PublicKey = PKeySpace;
Set SecretKey = SKeySpace;

PublicKey x SecretKey KeyGen();

Ciphertext Enc(PublicKey pk, Message m);
Message Dec(SecretKey sk, Ciphertext m);

PAGE 53

R
3.b) IND-CPA security of a PKE

Game Left(PubKeyEnc E) { Game Right(PubKeyEnc E) {
E.PublicKey pk; E.PublicKey pk;
E.SecretKey sk; E.SecretKey sk;
Void Initialize() { Void Initialize() {
E.PublicKey x E.SecretKey k = E.KeyGen(); E.PublicKey x E.SecretKey k = E.KeyGen();
pk = k[0]; pk = k[0];
sk = k[1]; sk = k[1];
¥ ¥
E.PublicKey PK() { E.PublicKey PK() {
return pk; return pk;
¥ }
E.Ciphertext ENC(E.Message mL, E.Message mR) { E.Ciphertext ENC(E.Message mL, E.Message mR) {
return E.Enc(pk, mL); return E.Enc(pk, mR);
} }
} }

PAGE 54

*
4. State the KEM-DEM scheme

Scheme Hyb(KEM K, SymEnc E) extends PubKeyEnc {
such that KEM.M = DEM.K requires K.SharedSecret subsets E.Key;

Hyb.KX = KEM.K Set PublicKey = K.PublicKey;
HYbM — DEM.M Set SecretKey = K.SecretKey;

Set Message = E.Message;

Hyb.C = KEM.C x DEM.C Set Ciphertext = K.Ciphertext * E.Ciphertext;
. PublicKey * SecretKey KeyGen() {
Hyb.KeyGen = KEM.KeyGen return K.KeyGen();
¥
Hyb.Enc(PK, M): Ciphertext Enc(PublicKey pk, Message m) {
K.Ciphertext x K.SharedSecret x = K.Encaps(pk);
(Ckem)K) “ KEM-EncapS(PK) K.Ciphertext c_kem = x[0];
E.Key k_dem = x[1]; .
Clem « DEM'EnC(K’ M) E.Ciphertext c_dem = E.Enc(k_dem, m); * This
return (Crem, Caem) , AR Gy GEELE ProofFrog
modeling
Hyb.Dec(SK, (Crems Cdem)): Message Dec(SecretKey sk, Ciphertext c) { doesn't
K.Ciphertext c_kem = c[0]; capture
K := KEM.Decaps(SK, Cyem) E.Ciphertext c_dem = c[1]; p tion f
if) K.SharedSecret k_dem = K.Decaps(sk, c_kem); r?Je(:}C?J or
I K == Lireturn L return E.Dec(k_dem, c_dem); simplicity
return DEM.Dec(K, Cgem) ’ (but could)

ll1III
b. Proof: Setting up the theorem statement

= First we list all the sets and primitives used in the theorem statement:

let:

" Set SymMessageSpace;

Set KEMSharedSecretSpace;
Set SymCiphertextSpace;
Sets < Set KEMCiphertextSpace;

Set PubKeySpace;
_Set SecretKeySpace;

7p)

b)

;E SymEnc E = SymEnc(SymMessageSpace, SymCiphertextSpace, KEMSharedSecretSpace);

.g KEM K = KEM(KEMSharedSecretSpace, KEMCiphertextSpace, PubKeySpace, SecretKeySpace);
A Hyb H = Hyb(K, E); Notice the DEM secret key space 1s

Y

Target scheme equal to the KEM shared secret space

PAGE 56

*
b. Proof: Theorem statement

= Now we can state the security assumptions on the primitives:

assume.
OTS(E);
CPAKEM(K) ;

= And the goal of the theorem:

theorem:
CPA(H);

PAGE 57

—
b. Proof summary

games:
Game 0: KEM-DEM scheme in PKE CPA-left game // Game ©

CPA(H).Left;

Game 1: Use random KEM shared secret instead of real CPAKEM(K) .Real compose R1(E, K, H):

= Reduction R1 against KEM CPA security game
= Ri1 with KEM-CPA-real = Game 0

= Ri1 with KEM-CPA-ideal = Game 1 // Game 1
CPAKEM(K).Ideal compose R1(E, K, H);
Game 2: Encrypt right message instead of left (under OTS(E).Left compose R2(E, K, H);

random key)

= Reduction R2 against DEM OTS security game - s
- R2 with DEM-OTS-left = Game 1 /7 bane T
= R2 with DEM-OTS-right = Game 2 OTS(E).Right compose R2(E, K, H);
CPAKEM(K).Ideal compose R3(E, K, H);
Game 3: Use real KEM shared secret instead of random
. Reductiqn R3 against. KEM CPA security game // Game 3
= R3 with KEM-CPA-ideal = Game 2
- R3 with KEM-CPA-real = Game 3 CPAKEM(K) .Real compose R3(E, K, H);

» Game 3 = KEM-DEM scheme in PKE-CPA-right game CPA(H) .Right;

* Minor simplification of ProofFrog notation: all game lines should have "against CPA(H).Adversary" at the end

—
b. Proof summary

games:
// Game ©
CPA(H).Left; }
CPAKEM(K).Real compose R1(E, K, H); Code-wise equivalence steps:

// Game 1

CPAKEM(K).Ideal compose R1(E, K, H);

OTS(E).Left compose R2(E, K, H); code-wise equlvalent by

} ProofFrog checks that these steps are
* inlining the scheme & reduction into

// Game 2 the game
OTS(E).Right compose R2(E, K, H); } « canonicalizing each game
CPAKEM(K) .Ideal compose R3(E, K, H); o Comparing the programs as Strings

// Game 3
CPAKEM(K) .Real compose R3(E, K, H);
CPA(H).Right;

* Minor simplification of ProofFrog notation: all game lines should have "against CPA(H).Adversary" at the end

—
b. Proof summary

games:
// Game ©
CPA(H).Left;

CPAKEM(K).Real compose R1(E, K, H); Indistinguishable by
> assumption steps:
// Game 1
CPAKEM(K) . Ideal R1(E, K, H);
e 5 ProofFrog checks that these steps are
OTS(E).Left compose R2(E, K, H); . e . . .
indistinguishable by an assumption in
// Game 2 f the theorem statement:
OTS(E).Right compose R2(E, K, H);)
CPAKEM(K).Ideal compose R3(E, K, H); . assume: CPAKEM(K) implies
> CPAKEM(K) .Real = CPAKEM(K).Ideal
// Game 3 + assume: OTS(E) implies
CPAKEM(K) .Real compose R3(E, K, H); _ OTS(E).Left = OTS(E).Right

CPA(H) .Right;

* Minor simplification of ProofFrog notation: all game lines should have "against CPA(H).Adversary" at the end

—
b. Proof summary

games:
// Game ©
CPA(H).Left;
CPAKEM(K) .Real compose R1(E, K, H);

// Game 1
CPAKEM(K).Ideal compose R1(E, K, H); AH that we have left to d()

OTS(E).Left compose R2(E, K, H);

1s write out the three
reductions R1, R2, R3

// Game 2
OTS(E).Right compose R2(E, K, H);
CPAKEM(K) .Ideal compose R3(E, K, H);

// Game 3
CPAKEM(K).Real compose R3(E, K, H);
CPA(H).Right;

* Minor simplification of ProofFrog notation: all game lines should have "against CPA(H).Adversary" at the end

*
b. Proof: Reduction R1

Reduction R1(SymEnc E, KEM K, Hyb H) compose CPAKEM(K) {
PK := KEM.CPA.PK() H.PublicKey PK() {

return challenger.PK();

PKE.CPA.PK(): }
return PK H.Ciphertext ENC(H.Message mL, H.Message mR) {
K.Ciphertext * K.SharedSecret y = challenger.ENC();
PKE.CPA.ENC(M[, MR): K.Ciphertext c_kem = y[0];

K.SharedSecret k_dem = y[1];

E.Ciphertext c_dem = E.Enc(k_dem, mL);
Cdem « DEM.Enc(K, My,) return [c_kem, c_dem];

(Ckem, K) := KEM.CPA.ENC()

return (Ckem, Ciem) :

PAGE 62

*
5. Proof: Reduction R2

Reduction R2(SymEnc E, KEM K, Hyb H) compose OTS(E) {
K.PublicKey pk;
L K.SecretKey sk;
(PK,SK) := KEM.KeyGen() Void Initialize() {

K.PublicKey * K.SecretKey k = K.KeyGen();
PKE.CPA.PK():

pk = k[0];
return PK sk = k[1];
}
PKE.CPA.ENC(M,, MR): H.Publickey PK() {
return pk;

(Ckem, —) := KEM.Encaps(PK) }
Cdem := SKE.OTS.ENC(ML, M) H.Ciphertext ENC(H.Message mL, H.Message mR) {
return (Ciem, Ciem) K.Ciphertext * K.SharedSecret x = K.Encaps(pk);
K.Ciphertext c_kem = x[0];
E.Ciphertext c_dem = challenger.ENC(mL, mR);
return [c_kem, c_dem];

ll1II
5. Proof: Reduction R3

Reduction R3(SymEnc E, KEM K, Hyb H) compose CPAKEM(K) {
PK := KEM.CPA.PK() H.PublicKey PK() {

return challenger.PK();

PKE.CPA.PK(): }
return PK H.Ciphertext ENC(H.Message mL, H.Message mR) {
K.Ciphertext x K.SharedSecret y = challenger.ENC();
PKE.CPA.ENC(M7},, MR): K.Ciphertext c_kem = y[0];

K.SharedSecret k_dem = y[1];

E.Ciphertext c_dem = E.Enc(k_dem, mR);
Cdem := DEM.Enc(K, Mg) return [c_kem, c_dem];

return (Cxem, Cdem) '

(Ckem; K) := KEM.CPA.ENC()

PAGE 64

lllllllllllllllllllllllllllllllllllllIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
We're done!

> proof_frog prove Hyb-is-CPA.proof

—=STEP 1=== 3 files for primitive syntax: 27 LoC
Current: CPA(H).Left;
Hop To: Game@(K, E, H);

3 files for security definitions: 83 LoC

1 file for scheme: 26 LoC

SIMPLIFYING CURRENT GAME .
Game Left() { = 1 file for prooft: 75 LoC

[...]

Took me about 30 minutes to write it
Inline Success!
Proof Succeeded!

PAGE 65

R
Other examples from Joy of Cryptography in ProofFrog

Completed Proofs. « Given a length-tripling PRG G, a PRG H which, when

« A symmetric encryption scheme that encrypts twice with given a seed sy, || sg, computes z = G(sr), y = G(sr)

Primitives and Associated Security Definitions.
o Symmetric Encryption Schemes [14, Definition 2.1]

Correctness [14, Definition 2.2]

One-Time Uniform Ciphertexts [14, Definition 2.5]
One-Time Secrecy [14, Definition 2.6]
CPA-security [14, Definition 7.1]

CPAS$-security [14, Definition 7.2]

CCA-security [14, Definition 9.1]

CPAS$-security [14, Definition 9.2]

o Pseudorandom Generators (PRGs) and security [14, Def-
inition 5.1]

¢ Pseudorandom Functions (PRFs) and security [14, Defi-
nition 6.1]

o Message Authentication Codes (MACs) [14, Definition
10.1] and security [14, Definition 10.2]

« Public Key Encryption Schemes [14, Chapter 15]

Correctness [14, Chapter 15]
One-Time Secrecy [14, Definition 15.4]
CPA-security [14, Definition 15.1]
CPAS$-security [14, Definition 15.2]

a one-time-pad using independent keys has one-time
uniform ciphertexts. [14, Claim 2.13].

If a symmetric encryption scheme has one-time uniform
ciphertexts, then it has one-time secrecy. [14, Theorem
2.15]

If a symmetric encryption scheme 3 has one-time se-
crecy, then a symmetric encryption scheme which en-
crypts by returning a pair of ciphertexts (c1,cy) where
¢; = X.Enc(k;, m) also has one-time secrecy. [14, Exer-
cise 2.13]

A symmetric encryption scheme ¥ has one-time secrecy
if and only if an encryption of a provided message with
a one-time key is indistinguishable from an encryption
of a random message with a one-time key. [14, Exercise
2.14]

A symmetric encryption scheme 3 has one-time secrecy
if and only if the ciphertext pair (cz, cr) is indistinguish-
able from the ciphertext (cg, c;,) where my and mp are
encrypted with one-time keys. [14, Exercise 2.15]

The Pseudo-OTP symmetric encryption scheme which
uses a secure pseudo-random generator G to encrypt
messages as G(k) @ m provides one-time secrecy. [14,
Claim 5.4]

A length-tripling PRG which, when given a seed s, uses
a length-doubling PRG G to compute z || y = G(s),
u || v = G(y) and returns z || u || v is secure assuming
G’s security. [14, Claim 5.5]

Given a length-tripling PRG G, a PRG H which, when
given a seed s, computes z || y | z = G(s) and returns
G(z) || G(z) is secure. [14, Exercise 5.8.a]

Given a length-tripling PRG G, a PRG H which, when
given a seed s, computes z || y || z = G(s) and returns
z || y is secure. [14, Exercise 5.8.b]

Given a length-tripling PRG G, a PRG H which, when
given a seed s, computes * = G(s), y = G(0*) and
returns x @ y is secure. [14, Exercise 5.8.e]

and returns x @ y is secure. [14, Exercise 5.8.f]

Given a length-doubling PRG G, a PRG H which, when
given a seed s, computes z || y = G(s), w = G(y) and
returns (z @ y) || w is secure. [14, Exercise 5.10]

If a symmetric encryption scheme is CPA$-secure, then
it is also CPA-secure. [14, Claim 7.3]

A symmetric encryption scheme has CPA security if and
only if encryptions of provided messages using the same
key are indistinguishable from encryptions of random
messages using the same key. [14, Exercise 7.13]

If a symmetric encryption scheme is CCA$-secure, then
it is also CCA-secure. [14, Exercise 9.6]

If ¥ is a CPA-secure symmetric encryption scheme
and M is a secure MAC, then the encrypt-then-MAC
construction is CCA-secure. [14, Claim 10.10]

If a public-key encryption scheme has one-time secrecy,
then it is also CPA-secure. [14, Claim 15.5]

If ¥gym is a one-time-secret symmetric-key encryption
scheme and X, is a CPA-secure, then hybrid encryption
which generates a one-time symmetric key, encrypts the
symmetric key under X, encrypts the message under
the one-time symmetric key, and returns the pair of ci-
phertexts is a CPA-secure public-key encryption scheme.
[14, Claim 15.9]

If ¥g and X7 are symmetric encryption schemes, where
31 has one-time uniform ciphertexts, then the encryption
scheme ¥ which encrypts a message first with ¥ g, and
then encrypts the resulting ciphertext with ¥, also has
one-time uniform ciphertexts.

If ¥ and X7 are symmetric encryption schemes, where
Y1 is CPA$-secure, then the encryption scheme ¥ which
encrypts a message first with ¥ g, and then encrypts the
resulting ciphertext with X, is also CPA$-secure.

D
Neato: Variable-length hybrid argument in ProofFrog

games:
CPA(E).Left;
induction(i from 1 to q) {

OneTimeSecrecy(E).Left compose R(E, 1);
OneTimeSecrecy(E) .Right compose R(E, 1i);

}

CPA(E) .Right;

* A few details omitted for presentation clarity PAGE 67

*
Prooffrog has many limitations

= No formal-verified base or precise semantics

= Very tied to the game-hopping formalism

= Restricted domain specific language

= Very little understanding of mathematics

= No manual intervention if proof engine fails

= No attempt yet at protocols with complex states
= Minimal tooling and documentation

= Minimal developer community

PAGE 68

0: What is the future of Prooffrog?
A: Uncertain; looking for feedback

Continue developing
ProofFrog as a formal
verification engine?

= Improve expressivity

= Option to fork out to EasyCrypt
when stuck

= Export to LaTeX

Transition to a tool to
support pen-and-paper
cryptographers?

= Manage game source code for pen-
and-paper proofs in a domai—
specific language

= Some type-checking and minimal
validation

= Export to LaTeX

PAGE 70

*
Want to get started with ProofFrog?

= Easy to install with Python (pip3 install proof_frog)

» Engine and examples at https://github.com/ProofFrog/

= (Hopetfully) fun way to write your first formally verified proof!
= Be aware of limitations
= Ask questions on Github Discussions

= Contact me (dstebila@uwaterloo.ca) if you have thoughts on the possible
directions (formal verification engine? pen-and-paper support tool?) and want to
help out

PAGE 71

https://github.com/ProofFrog/
mailto:dstebila@uwaterloo.ca

1) Primitives: KEM-DEM Security Pen & Paper Proof
2) KEM-DEM & more in Prooffrog

CAPS 2025
https://prooffrog.github.io/
https://eprint.iacr.org/2025/418 .

\Y
Douglas Stebila - ==
Joint work with Ross Evans AN e |
and Matthew McKague N
W UNIVERSITY OF FACULTY OF NSERC We acknowledge the support of the Natural Sciences and

@ WAT E R LOO MATHEMATICS CRONG Engineering Research Council of Canada (NSERC).

https://prooffrog.github.io/
https://eprint.iacr.org/2025/418

